Skip to main content

Transcriptomic analysis of exosomal shuttle mRNA in Pacific oyster Crassostrea gigas during bacterial stimulation.

Author
Abstract
:

As marine invertebrates, oysters lack adaptive immunity and employ innate immunity as the front line and almost the solo defense mechanism to protect them against invaders. Accumulating research achievements demonstrated that exosomes could act as innate immune effectors that contribute to host defense mechanism. To better understand the immune functions of exosomes in Crassostrea gigas against bacterial stimulation, RNA-Seq was applied to explore the global expression changes of exosomes in oyster after Staphylococcus aureus and Vibrio splendidus stimulation. Totally 171573691 single end raw reads were yielded via Ion Torrent Proton sequencing, which were trimmed into 121988325 clean reads, and then 1505 abundant exosomal shuttle mRNAs (esmRNAs) were identified. Gene ontology (GO) analysis revealed that these abundant esmRNAs could be categorized into 15 cellular components, 12 molecular functions and 21 biological processes, and these abundant esmRNAs were mapped onto 62 biological signaling pathways by KEGG. In total, 68 significant differentially expressed genes (DEGs, Fold change ≥ 2, Q-value < 0.05) were identified between S. aureus stimulated group and control group, including 21 up-regulated and 47 down-regulated ones. While 99 significant DEGs between V. splendidus challenged group and control group were identified, including 42 up-regulated and 57 down-regulated ones. To validate the transcriptomic data, 24 DEGs were randomly selected and confirmed via quantitative real-time PCR (qRT-PCR) and the results showed that their expression patterns agreed well with the RNA-Seq analysis. This study would enrich the C. gigas transcriptome database and provide insight into the immune functions of oyster exosomes against bacterial infection.

Year of Publication
:
2018
Journal
:
Fish & shellfish immunology
Date Published
:
2018
ISSN Number
:
1050-4648
URL
:
http://linkinghub.elsevier.com/retrieve/pii/S1050-4648(18)30017-2
DOI
:
10.1016/j.fsi.2018.01.017
Short Title
:
Fish Shellfish Immunol
Download citation