Skip to main content

Inhibition of galectin-3 ameliorates the consequences of cardiac lipotoxicity in a rat model of diet-induced obesity.

Author
Abstract
:

Obesity is accompanied by metabolic alterations characterized by insulin resistance and cardiac lipotoxicity. Galectin-3 (Gal-3) induces cardiac inflammation and fibrosis in the context of obesity; however, its role in the metabolic consequences of obesity is not totally established. We have investigated the potential role of Gal-3 in the cardiac metabolic disturbances associated with obesity. In addition, we have explored whether this participation is at least partially acting on mitochondrial damage. Gal-3 inhibition in rats fed a high-fat diet (HFD) for 6 weeks with modified citrus pectin (MCP; 100 mg/kg/day) attenuated the increase in cardiac levels of total triglyceride (TG). MCP treatment also prevented the increase in cardiac protein levels of carnitine palmitoyl transferase IA, mitofusin 1 and mitochondrial complexes I and II, reactive oxygen species accumulation and decrease in those of complex V but did not affect the reduction in 18F-fluorodeoxyglucose uptake observed in HFD rats. The exposure of cardiac myoblasts (H9c2) to palmitic acid increased the rate of respiration mainly due to an increase in the proton leak, glycolysis, oxidative stress, β-oxidation and reduced mitochondrial membrane potential. Gal-3activity inhibition was unable to affect these changes. Our findings indicate that Gal-3 inhibition attenuates some of the consequences of cardiac lipotoxicity induced by a HFD since it reduced TG and LPC levels. These reductions were accompanied by an amelioration in the mitochondrial damage observed in HFD rats, although no improvement was observed in insulin resistance. These findings increase the interest for Gal-3 as a potential new target for therapeutic intervention to prevent obesity-associated cardiac lipotoxicity and subsequent mitochondrial dysfunction.

Year of Publication
:
2018
Journal
:
Disease models & mechanisms
Date Published
:
2018
ISSN Number
:
1754-8403
URL
:
http://dmm.biologists.org/cgi/pmidlookup?view=long&pmid=29361517
DOI
:
10.1242/dmm.032086
Short Title
:
Dis Model Mech
Download citation