Skip to main content

High-fidelity entanglement swapping and generation of three-qubit GHZ state using asynchronous telecom photon pair sources.

Author
Abstract
:

We experimentally demonstrate a high-fidelity entanglement swapping and a generation of the Greenberger-Horne-Zeilinger (GHZ) state using polarization-entangled photon pairs at telecommunication wavelength produced by spontaneous parametric down conversion with continuous-wave pump light. While spatially separated sources asynchronously emit photon pairs, the time-resolved photon detection guarantees the temporal indistinguishability of photons without active timing synchronizations of pump lasers and/or adjustment of optical paths. In the experiment, photons are sufficiently narrowed by fiber-based Bragg gratings with the central wavelengths of 1541 nm & 1580 nm, and detected by superconducting nanowire single-photon detectors with low timing jitters. The observed fidelities of the final states for entanglement swapping and the generated three-qubit state were 0.84 ± 0.04 and 0.70 ± 0.05, respectively.

Year of Publication
:
2018
Journal
:
Scientific reports
Volume
:
8
Issue
:
1
Number of Pages
:
1446
Date Published
:
2018
URL
:
http://dx.doi.org/10.1038/s41598-018-19738-8
DOI
:
10.1038/s41598-018-19738-8
Short Title
:
Sci Rep
Download citation