Gamma-glutamylcysteine ethyl ester-induced up-regulation of glutathione protects neurons against Abeta(1-42)-mediated oxidative stress and neurotoxicity: implications for Alzheimer's disease.
Author | |
---|---|
Abstract | :
Glutathione (GSH) is an important endogenous antioxidant found in millimolar concentrations in the brain. GSH levels have been shown to decrease with aging. Alzheimer's disease (AD) is a neurodegenerative disorder associated with aging and oxidative stress. Abeta(1-42) has been shown to induce oxidative stress and has been proposed to play a central role in the oxidative damage detected in AD brain. It has been shown that administration of gamma-glutamylcysteine ethyl ester (GCEE) increases cellular levels of GSH, circumventing the regulation of GSH biosynthesis by providing the limiting substrate. In this study, we evaluated the protective role of up-regulation of GSH by GCEE against the oxidative and neurotoxic effects of Abeta(1-42) in primary neuronal culture. Addition of GCEE to neurons led to an elevated mean cellular GSH level compared with untreated control. Inhibition of gamma-glutamylcysteine synthetase by buthionine sulfoximine (BSO) led to a 98% decrease in total cellular GSH compared with control, which was returned to control levels by addition of GCEE. Taken together, these results suggest that GCEE up-regulates cellular GSH levels which, in turn, protects neurons against protein oxidation, loss of mitochondrial function, and DNA fragmentation induced by Abeta(1-42). These results are consistent with the notion that up-regulation of GSH by GCEE may play a viable protective role in the oxidative and neurotoxicity induced by Abeta(1-42) in AD brain. |
Year of Publication | :
2005
|
Journal | :
Journal of neuroscience research
|
Volume | :
79
|
Issue | :
5
|
Number of Pages | :
700-6
|
Date Published | :
2005
|
ISSN Number | :
0360-4012
|
URL | :
https://doi.org/10.1002/jnr.20394
|
DOI | :
10.1002/jnr.20394
|
Short Title | :
J Neurosci Res
|
Download citation |