Epitaxial stabilization versus interdiffusion: synthetic routes to metastable cubic HfO<sub>2</sub> and HfV<sub>2</sub>O<sub>7</sub> from the core-shell arrangement of precursors.
Author | |
---|---|
Abstract | :
Metastable materials that represent excursions from thermodynamic minima are characterized by distinctive structural motifs and electronic structure, which frequently underpins new function. The binary oxides of hafnium present a rich diversity of crystal structures and are of considerable technological importance given their high dielectric constants, refractory characteristics, radiation hardness, and anion conductivity; however, high-symmetry tetragonal and cubic polymorphs of HfO are accessible only at substantially elevated temperatures (1720 and 2600 °C, respectively). Here, we demonstrate that the core-shell arrangement of VO and amorphous HfO promotes outwards oxygen diffusion along an electropositivity gradient and yields an epitaxially matched VO/HfO interface that allows for the unprecedented stabilization of the metastable cubic polymorph of HfO under ambient conditions. Free-standing cubic HfO, otherwise accessible only above 2600 °C, is stabilized by acid etching of the vanadium oxide core. In contrast, interdiffusion under oxidative conditions yields the negative thermal expansion material HfVO. Variable temperature powder X-ray diffraction demonstrate that the prepared HfVO exhibits pronounced negative thermal expansion in the temperature range between 150 and 700 °C. The results demonstrate the potential of using epitaxial crystallographic relationships to facilitate preferential nucleation of otherwise inaccessible metastable compounds. |
Year of Publication | :
2019
|
Journal | :
Nanoscale
|
Volume | :
11
|
Issue | :
44
|
Number of Pages | :
21354-21363
|
Date Published | :
2019
|
ISSN Number | :
2040-3364
|
URL | :
https://doi.org/10.1039/c9nr07316g
|
DOI | :
10.1039/c9nr07316g
|
Short Title | :
Nanoscale
|
Download citation |