Skip to main content

Mechanistic insight into fragmentation reactions of titanapinacolate complexes.

Author
Abstract
:

Reactions between terminal alkynes or aromatic ketones and titanapinacolate complexes (DMSC)Ti(OCAr(2)CAr(2)O) (2, Ar = Ph, and 3, Ar = p-MeC(6)H(4); DMSC = 1,2-alternate dimethylsilyl-bridged p-tert-butylcalix[4]arene dianion) occur via rupture of the C-C bond of the titanacycle. Thus, reactions of 2 and 3 with terminal alkynes produce 2-oxatitanacyclopent-4-ene or 2-oxatitanacycloheptadiene complexes along with free Ar(2)CO. These compounds have been characterized spectroscopically and by X-ray crystallography. Because metallapinacolate intermediates have been implicated in important C-C bond-forming reactions, such as pinacol coupling and McMurry chemistry, the mechanism of the fragmentation reactions was studied. Analysis of the kinetics of the reaction of (DMSC)Ti[OC(p-MeC(6)H(4))(2)C(p-MeC(6)H(4))(2)O] (3) with Bu(t)Ctbd1;CH revealed that the fragmentation reactions proceed via a preequilibrium mechanism, involving reversible dissociation of titanapinacolate complexes into (DMSC)Ti(eta(2)-OCAr(2)) species with release of a ketone molecule, followed by rate-limiting reaction of (DMSC)Ti(eta(2)-OCAr(2)) species with an alkyne or ketone molecule.

Year of Publication
:
2002
Journal
:
Journal of the American Chemical Society
Volume
:
124
Issue
:
41
Number of Pages
:
12217-24
Date Published
:
2002
ISSN Number
:
0002-7863
URL
:
https://doi.org/10.1021/ja0271577
DOI
:
10.1021/ja0271577
Short Title
:
J Am Chem Soc
Download citation