Trans-10, cis-12 conjugated linoleic acid decreases de novo lipid synthesis in human adipocytes.
Author | |
---|---|
Abstract | :
Conjugated linoleic acid (CLA) reduces adiposity in vivo. However, mechanisms mediating these changes are unclear. Therefore, we treated cultures of human adipocytes with trans-10, cis-12 (10,12) CLA, cis-9, trans-11 (9,11) CLA or other trans fatty acids (FA), and measured indices of lipid metabolism. The lipid-lowering effects of 10,12 CLA were unique, as other trans FA did not reduce TG content to the same extent. Using low levels of [(14)C]-CLA isomers, it was shown that both isomers were readily incorporated into acylglycerols and phospholipids, albeit at lower levels than [(14)C]-oleic or [(14)C]-linoleic acids. When using [(14)C]-acetic acid and [(14)C]-pyruvic acid as substrates, 30 μM 10,12 CLA, but not 9,11 CLA, decreased de novo synthesis of triglyceride, free FA, diacylglycerol, cholesterol esters, cardiolipin, phospholipids and ceramides within 3-24 h. Treatment with 30 μM 10,12 CLA, but not 9,11 CLA, decreased total cellular lipids within 3 days and the ratio of monounsaturated FA (MUFA) to saturated FA, and increased C18:0 acyl-CoA levels within 24 h. Consistent with these data, stearoyl-CoA desaturase (SCD)-1 mRNA and protein levels were down-regulated by 10,12 CLA within 7-12 h, respectively. The mRNA levels of liver X receptor (LXR)α and sterol regulatory element binding protein (SREBP)-1c, transcription factors that regulate SCD-1, were decreased by 10,12 CLA within 5 h. These data suggest that the isomer-specific decrease in de novo lipid synthesis by 10,12 CLA is due, in part, to the rapid repression of lipogenic transcription factors that regulate MUFA synthesis, suggesting an anti-obesity mechanism unique to this trans FA. |
Year of Publication | :
2012
|
Journal | :
The Journal of nutritional biochemistry
|
Volume | :
23
|
Issue | :
6
|
Number of Pages | :
580-90
|
ISSN Number | :
0955-2863
|
URL | :
http://linkinghub.elsevier.com/retrieve/pii/S0955-2863(11)00089-1
|
DOI | :
10.1016/j.jnutbio.2011.02.014
|
Short Title | :
J Nutr Biochem
|
Download citation |